Understanding the Brain

Action-Specific Perception

From Cognopedia
Jump to: navigation, search

The action-specific perception account proposes that people perceive the environment in terms of their ability to act in it[1][2]. For example, softball players who are hitting better see the ball as bigger[3]. Tennis players see the ball as moving slower when they successfully return the ball[4]. Furthermore, the perceiver’s intention to act is also critical. Only the perceiver’s ability to perform the intended action influences perception, while the perceiver’s abilities for unintended actions do not influence perception[5].

Action-specific effects have been documented in a variety of contexts and with a variety of manipulations[6]. The original work was done on perceived slant of hills and perceived distance to targets. Hills look steeper and targets look farther away when wearing a heavy backpack[7][8]. In addition to walking, many other actions influence perception such as throwing, jumping, falling, reaching, grasping, kicking, hitting, blocking, and swimming. In addition to perceived slant and perceived distance, other aspects of perception are influenced by ability such as size, shape, height, and speed. These results have been documented in athletes such as softball players, golfers, tennis players, swimmers, and people skilled in Parkour.

The action-specific perception account has roots in Gibson’s (1979) ecological approach to perception[9]. According to Gibson, the primary objects of perception are affordances, which are the possibilities for action. Affordances capture the mutual relationship between the environment and the perceiver. For example, a tall wall is a barrier to an elderly midget but affords jumping over to someone trained in Parkour, or urban climbing. Like the ecological approach, the action-specific perception account favors the notion that perception involves processes that relate the environment to the perceiver’s potential for action. Consequently, similar environments will look different to perceivers with different abilities, or even to the same perceiver as his or her abilities change.

The claim that actionability influences perception is controversial. These findings challenge traditional theories of perception, nearly all of which conceptualize perception as a process that provides an objective and behaviorally-independent representation of the environment. The fact that the same environment looks different depending on the perceiver’s abilities and intentions implies that perception is not behaviorally-neutral.

Because the action-specific perception account challenges traditional theories of perception, alternative accounts to explain apparent action-specific effects have been proposed. The most common of these explanations is that the perceiver’s ability affects the perceiver’s judgment about what they see, rather than affecting perception itself. In other words, perceivers see the world similarly but then report their impressions differently.[10]

Perception is an internal state and thus cannot be measured directly. Instead, researchers must rely on reports, judgments, and behaviors. However, many attempts have been made to resolve this issue. One technique is to use many different kinds of perceptual judgments[11]. For example, action-specific effects have been found when verbal reports and visual matching tasks. Action-specific effects are also apparent with indirect measures such as perceived parallelism as a proxy for perceived distance. Action-specific effects have also been found when using action-based measures such as blindwalking.

See also

References

  1. Witt, J. K. (2011). Action's effect on perception. Current Directions in Psychological Science.
  2. Proffitt, D. R. (2006). Embodied perception and the economy of action. Perspectives on Psychological Science.
  3. Witt, J. K., & Proffitt, D.R. (2005). See the ball, hit the ball: Apparent ball size is correlated with batting average. Psychological Science, 16, 937-938.
  4. Witt, J. K., & Sugovic, M. (2010). Performance and ease influence perceived speed. Perception, 39, 13241-1353.
  5. Witt, J. K., Proffitt, D. R., & Epstein, W. (2010). How and when does action scale perception? Journal of Experimental Psychology: Human Perception and Performance, 36, 1153-1160.
  6. Witt, J. K. (2011). Action's effect on perception. Current Directions in Psychological Science.
  7. Bhalla, M., & Proffitt, D. R. (1999). Visual-Motor recalibration in geographical slant perception. ‘’Journal of Experimental Psychology: Human Perception & Performance, 25’’, 1076-1096.
  8. Proffitt, D.R., Stefanucci, J., Banton, T., & Epstein, W. (2003). The role of effort in perceiving distance. ‘’Psychological Science, 14’’, 106-112.
  9. Gibson, J. J. (1979). The ecological approach to visual perception (Boston: Houghton Mifflin)
  10. Loomis J M, Philbeck J W, (2008). Measuring spatial perception with spatial understanding and action”, in Embodiment, Ego-Space, and Action Eds. R L Klatzky, B MacWhinney, M Behrmann (Cambridge, MA: The MIT Press) pp. 1–44, here: p. 33.
  11. Witt, J. K. (2011). Action's effect on perception. Current Directions in Psychological Science.